Water Pressure in Intra- and Subglacial Channels

Author:

Röthlisberger Hans

Abstract

AbstractWater flowing in tubular channels inside a glacier produces frictional heat, which causes melting of the ice walls. However the channels also have a tendency to close under the overburden pressure. Using the equilibrium equation that at every cross-section as much ice is melted as flows in, differential equations are given for steady flow in horizontal, inclined and vertical channels at variable depth and for variable discharge, ice properties and channel roughness. It is shown that the pressure decreases with increasing discharge, which proves that water must flow in main arteries. The same argument is used to show that certain glacier lakes above long flat valley glaciers must form in times of low discharge and empty when the discharge is high, i.e. when the water head in the subglacial drainage system drops below the lake level. Under the conditions of the model an ice mass of uniform thickness does not float, i.e. there is no water layer at the bottom, when the bed is inclined in the down-hill direction, but it can float on a horizontal bed if the exponentnof the law for the ice creep is small. It is further shown that basal streams (bottom conduits) and lateral streams at the hydraulic grade line (gradient conduits) can coexist. Time-dependent flow, local topography, ice motion, and sediment load are not accounted for in the theory, although they may strongly influence the actual course of the water. Computations have been carried out for the Gornergletscher where the bed topography is known and where some data are available on subglacial water pressure.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3