Micro-earthquakes beneath Ice Streams Β and C, West Antarctica: observations and implications

Author:

Anandakrishnan S.,Bentley C. R.

Abstract

Abstract Micro-earthquakes have been monitored at two locations on Ice Stream Β and one on Ice Stream C using a seismographic array built specifically for that purpose. Subglacial micro-earthquakes arc 20 times more abundant beneath Ice Stream C than beneath Ice Stream B, despite the 100 times more rapid movement of Ice Stream B. Triangulation shows the foci beneath Ice Stream C, like those beneath Ice Stream B, to be within a few meters of the base of the ice, presumably within the uppermost part of the bed, and fault-plane analysis indicates slips on horizontal planes at about a 30° angle to the presumed direction of formerly active flow. Source parameters, computed from spectra of the arrivals, confirmed that the speed of slip is three orders of magnitude faster beneath Ice Stream C than beneath Ice Stream Β which means that a five orders-of-magnitude greater fraction of the velocity of Ice Stream C is contributed by the faulting, although that fraction is still small. We attribute the difference in activity beneath the two ice streams to the loss of dilatancy in the till beneath Ice Stream C in the process that led to its stagnation.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seismic Constraints on Damage Growth Within an Unstable Hanging Glacier;Geophysical Research Letters;2023-05

2. Fine Structure of Microseismic Glacial Stick‐Slip;Geophysical Research Letters;2021-11-18

3. Not all Icequakes are Created Equal: Basal Icequakes Suggest Diverse Bed Deformation Mechanisms at Rutford Ice Stream, West Antarctica;Journal of Geophysical Research: Earth Surface;2021-03

4. Stick‐Slip Tremor Beneath an Alpine Glacier;Geophysical Research Letters;2021-01-25

5. Icequake Source Mechanisms for Studying Glacial Sliding;Journal of Geophysical Research: Earth Surface;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3