Evidence from 40Ar/39Ar Ages for a Churchill province source of ice-rafted amphiboles in Heinrich layer 2

Author:

Gwiazda Roberto H.,Hemming Sidney R.,Broecker Wallace S.,Onsttot Tullis,Mueller Chris

Abstract

Abstract40Ar/39Ar ages of most single ice-ratted amphiboles from Heinrich layer 2 (H2) from a core in the Labrador Sea, a core in the eastern North Atlantic and a core in the western North Atlantic range from 1600 to 2000 Ma. This range is identical to that for K/Ar ages from the Churchill province of the Canadian Shield that outcrops at Hudson Strait and forms the basement of the northern part of Hudson Bay. The ambient glacial sediment includes some younger and older grains derived from Paleozoic, Mesoproterozoic and Archean sources, but still the majority of the amphiboles have ages in the 1600–2000 Ma interval. The Ca/K ratios of these 1600–2000 Ma old amphiboles, however, have a bimodal distribution in contrast with the uniformity of the Ca/K ratios of H2 amphiboles. This indicates that 1600–2000 Ma old amphiboles of the ambient sediment were derived from an additional Early Proterozoic source besides Churchill province. In H2, Churchill-derived grains constitute 20–40% of the ice-rafted debris (IRD). The fraction in the ambient glacial sediment is 65–80%. Results presented here are consistent with the hypothesis that Heinrich events were produced by a sudden intensification of the iceberg discharge through Hudson Strait that mixed, in the North Atlantic, with icebergs that continued to calve from other ice sheets. The shift from mixed sources in the background sediment to a large dominance of Churchill province grains in H2 indicates that, even if calving of other ice sheets intensified during the Heinrich episode, the increase in the iceberg discharge via Hudson Strait from the Hudson Bay drainage basin of the Laurentide ice sheet was by far the largest.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3