Tri-band filter with multiple transmission zeros and controllable bandwidths

Author:

Li Qun,Zhang Yong-Hong,Feng Xin,Fan Yong

Abstract

This paper presents a compact microstrip tri-band bandpass filter (BPF) using two multimode stepped-impedance resonators (SIRs) with a 0° feed structure. The fundamental odd-mode and even-mode resonant frequencies and the third resonant frequency are utilized to determine the center frequencies of the tri-band filter. The mode-splitting technique is used by combining two SIRs with electrical coupling. Therefore, two modes generate one passband and the bandwidths can be controlled by the electrical coupling strength. The 0° feed network is applied to create one pair of transmission zeros at each side of all the triple passbands, resulting in high selectivity. Finally, a tri-band BPF with the central frequencies of 1.8, 2.4, and 5.8 GHz, and respective fractional bandwidths of 8.9, 12.5, and 5.3% are designed and fabricated. The simulated and measured results show a good agreement.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Absorptive reconfigurable bandstop filter with ultra-wide frequency tuning range using distributed lossy resonators;International Journal of Microwave and Wireless Technologies;2024-04-08

2. High-Selectivity Filtering Phase Shifter With Multiple Transmission Zeros;2022 IEEE 10th Asia-Pacific Conference on Antennas and Propagation (APCAP);2022-11-04

3. Design of tri-band bandpass filter using uniform impedance resonators loaded with different impedance stubs;Electromagnetics;2021-05-27

4. Dual-Mode Filter with High Design Flexibility Using Short-Loaded Resonator;Applied Computational Electromagnetics Society;2021-03-16

5. Dual-/tri-band bandpass filters with fully independent and controllable passband based on multipath-embedded resonators;International Journal of Microwave and Wireless Technologies;2020-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3