Novel wideband slot antenna having notch-band function for 2.4 GHz WLAN and UWB applications

Author:

Shagar Arumugam Chellamuthu,Wahidabanu Shaik Davood

Abstract

In this paper, the design, simulation, and fabrication of a novel printed rectangular slot antenna with a band-notched function suitable for 2.4 GHz wireless local area network (WLAN) and ultra-wideband (UWB) applications is presented and investigated. Two pairs of slits are introduced into the ground plane to realize band-notched function, by tuning the position, length, and width of which a suitable rejected frequency band can be obtained. To improve the impedance matching, a rectangular cut is also made in the ground plane so that the antenna can cover 2–12 GHz frequency range. According to the measured results, the proposed antenna has a large bandwidth totally satisfying the requirement of 2.4 GHz WLAN and UWB systems, while providing the required band-notch function from 5.1 to 5.9 GHz. The study of transfer function and time-domain characteristics also indicates the band-notched function of the antenna. The radiation patterns display nearly omni-directional performance and the antenna gain is stable except in the rejected frequency band (5.1–5.9 GHz). Moreover, group delays are within 1.5 ns except for the notch band. These features make it a promising candidate for UWB wireless applications. Details of this antenna are described, and the experimental results of the constructed prototype are given.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference25 articles.

1. Planar ultra wide band slot antenna with frequency band notch function;Kim;IEEE AP-S Int. Symp.,2004

2. A study on the UWB antenna with band-rejection characteristic;Yoon;IEEE AP-S Int. Symp,2004

3. Compact rectangular slot antenna with a novel coplanar waveguide fed diamond patch for ultra wideband applications

4. Bow-tie slot antenna fed by CPW

5. CPW-fed slot antenna with CPW tuning stub loading

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3