Design and development of a stacked complementary microstrip antenna with a “π”-shaped DGS for UWB, UNII, WLAN, WiMAX, and Radio Astronomy wireless applications

Author:

Kaur Amanpreet,Khanna Rajesh

Abstract

The proposed research paper presents the design, development, and experimental testing of a broadband stacked complementary microstrip antenna for ultra-wideband (UWB) (5.28–5.85 GHz), Unlicensed National Information Infrastructure band (UNII) (5.25–5.825 GHz), wireless local area networks (WLAN, IEEE802.11a, 5.15–5.35 GHz), and IEEE 802.11b (5.75–5.85 GHz), Worldwide Interoperability for Microwave Access band (5.25–5.85 GHz), and Radio Astronomy band (6.6–6.75 GHz) wireless applications. The main aim of this paper is to obtain an UWB behavior from the combined effect of two resonances exhibited by the driven and parasitic patches of a stacked complementary antenna geometry. Circularly polarized radiations are also emitted by the antenna by the addition of an orthogonal stub to its feed line. The proposed three-layered antenna structure (without air gap) is fabricated on commercially available glass-reinforced epoxy laminate, FR4 substrate. The topmost layer of FR4 has a square-shaped patch parasitic patch printed over it; this patch has a square slot etched out from it. The middle layer of the antenna has a square-shaped driven patch of approximately the same dimensions as that of the slot in parasitic patch. The antenna is fed using aperture-coupled feeding mechanism. Therefore the lowermost layer of FR4 has a ground plane on its top with a “π”-shaped slot etched from it and a feed line with an orthogonal stub at its bottom forming a “T”-shaped geometry. The antenna is fed by the electromagnetic coupling between the antenna layers .The proposed antenna has a compact structure with overall volumetric dimensions of 4.7 × 3.82 × 0.483 cm3. The antenna design and simulations are carried out using CSTMWSV'10 with perfect boundary (electric and magnetic) estimations. This designed antenna shows an UWB behavior from 5.14 to 5.85 GHz with an impedance bandwidth of 710 MHZ and a fractional bandwidth of 12.62% at the center frequency of band at 5.5 GHz. The radiating antenna also possesses a good gain of 4.59 dBi at the central frequency of 5.50 GHz and a 1 dB axial ratio bandwidth of 820 MHz from 5.16 to 5.98 GHz. The validation of results is done by fabrication and experimental testing of the antenna using a vector network analyzer and placing the antenna in an anechoic chamber for gain measurements. The measured results show close matching with the simulated ones and this makes the antenna well suited for the proposed wireless applications of interest, specifically in small handheld wireless communication devices.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3