Author:
Ferreiro-Castilla A.,Kyprianou A. E.,Scheichl R.
Abstract
Abstract
We describe an Euler scheme to approximate solutions of Lévy driven stochastic differential equations (SDEs) where the grid points are given by the arrival times of a Poisson process and thus are random. This result extends the previous work of Ferreiro-Castilla et al. (2014). We provide a complete numerical analysis of the algorithm to approximate the terminal value of the SDE and prove that the mean-square error converges with rate O(n-1/2). The only requirement of the methodology is to have exact samples from the resolvent of the Lévy process driving the SDE. Classical examples, such as stable processes, subclasses of spectrally one-sided Lévy processes, and new families, such as meromorphic Lévy processes (Kuznetsov et al. (2012), are examples for which our algorithm provides an interesting alternative to existing methods, due to its straightforward implementation and its robustness with respect to the jump structure of the driving Lévy process.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献