Abstract
AbstractWe consider a class of discrete-time Markov chains with state space [0, 1] and the following dynamics. At each time step, first the direction of the next transition is chosen at random with probability depending on the current location. Then the length of the jump is chosen independently as a random proportion of the distance to the respective end point of the unit interval, the distributions of the proportions being fixed for each of the two directions. Chains of that kind were the subjects of a number of studies and are of interest for some applications. Under simple broad conditions, we establish the ergodicity of such Markov chains and then derive closed-form expressions for the stationary densities of the chains when the proportions are beta distributed with the first parameter equal to 1. Examples demonstrating the range of stationary distributions for processes described by this model are given, and an application to a robot coverage algorithm is discussed.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献