Abstract
Abstract
Endoparasitoid species devoid of symbiotic viruses inject secretions derived from their reproductive glands into their hosts during parasitism in order to avoid various immune responses of their hosts. Pimpla turionellae L. (Hymenoptera: Ichneumonidae) is an endoparasitoid that lacks polydnaviruses, and its venom has previously been shown to paralyze the host Galleria mellonella (Lepidoptera: Pyralidae) and suppress its immune reactions to ensure the egg survival. The present study demonstrates that another female-injected factor calyx fluid extracted from the P. turionellae ovary is also responsible for the suppression of G. mellonella immunity. The total hemocyte counts of G. mellonella decrease after treatment with calyx fluid in a concentration-dependent manner. Significant reductions in cell viability are also observed at all calyx fluid doses both in vivo and in vitro. The analyses of the beads injected into the insects as encapsulation targets revealed that the number of encapsulated beads reduced significantly compared to controls post-calyx fluid injection. The injection of the highest calyx fluid dose (1 female equivalent calyx) is sufficient to completely inhibit the strong encapsulation and melanization reactions of the last instar larvae 24 h post-injection. These results demonstrate that P. turionellae calyx fluid is required to regulate host immunity for successful parasitization.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献