The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera)

Author:

Łopuch S.,Tofilski A.

Abstract

AbstractDespite the fact that symmetry is common in nature, it is rarely perfect. Because there is a wide range of phenotypes which differs from the average one, the asymmetry should increase along with deviation. Therefore, the aim of this study was to assess the level of asymmetry in normal individuals as well as in phenodeviants categorized as minor or major based on abnormalities in forewing venation in honey bees. Shape fluctuating asymmetry (FA) was lower in normal individuals and minor phenodeviants compared with major phenodeviants, whereas the former two categories were comparable in drones. In workers and queens, there were not significant differences in FA shape between categories. FA size was significantly lower in normal individuals compared with major phenodeviant drones and higher compared with minor phenodeviant workers. In queens, there were no significant differences between categories. The correlation between FA shape and FA size was significantly positive in drones, and insignificant in workers and queens. Moreover, a considerable level of directional asymmetry was found as the right wing was constantly bigger than the left one. Surprisingly, normal individuals were significantly smaller than minor phenodeviants in queens and drones, and they were comparable with major phenodeviants in all castes. The correlation between wing size and wing asymmetry was negative, indicating that smaller individuals were more asymmetrical. The high proportion of phenodeviants in drones compared with workers and queens confirmed their large variability. Thus, the results of the present study showed that minor phenodeviants were not always intermediate as might have been expected.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3