Some factors affecting numbers of Empoasca lybica (De Berg.) (Homoptera: Cicadellidae) infesting cotton in the Sudan Gezira

Author:

Joyce R. J. V.

Abstract

The Cicadellid, Empoasca lybica de Berg, is an important pest of cotton in the Sudan Gezira, where over 300,000 acres of cotton are grown annually under irrigation. Cotton is sown in mid-August, and the plants are uprooted and burnt the following May. The life-cycle of E. lybica from egg to gravid adult takes 16–24 days, and the adults live for up to 40 days. There is no diapause. During the 100 days from late August to early December when breeding on cotton is of economic importance, a single male and female could give rise to some 50,000 progeny.During May to July, when crops are confined to irrigated gardens and river banks, E. lybica is widely distributed in such places and can be found also on tree hosts, which are numerous especially in the southern Gezira and along river banks. There is circumstantial evidence of displacement over long distances, and the great majority of catches of E. lybica in sticky traps were made before the increase in population on cotton that occurs from September onwards.Of the 53 species of host-plants that have been recorded, only Solanum dubium, Rhynchosia memnonia, Hibiscus spp. and Abutilon spp. are of importance in the ecology of E. lybica. The first two especially are common weeds in fallows, which comprise more than half the land under rotation. Populations of E. lybica in Gezira fallows at the time of cotton germination tended to be greatest where pre-sowing rains (i.e., those falling from 1st July to 15th August) were highest. Correspondingly, initial infestation of cotton was highest in seasons and places receiving the most pre-sowing rains, although density of infestation in any place was affected by sowing date and proximity to irrigated fields and gardens which supported weed host-plants.In order to develop a system of sampling for infestations of E. lybica in the cotton crop, the distribution of nymphs on cotton plants was examined. It was found that nymphs were most numerous in the leafiest zones of the plant and a random choice of leaves seemed an appropriate means of sampling for infestation. The distribution of nymphs within and between cotton fields was also investigated and a standard sampling procedure adopted.Peak infestations on cotton could not be predicted from the level of initial colonisation, or from surveys a month later. Peak infestations were usually inversely related to the level of initial colonisation, especially when comparisons were made between seasons, as at the Gezira Research Farm. That is to say, high levels of initial infestation, which occurred in seasons of good pre-sowing rains, tended to be followed by low rates of increase, and in years of poor pre-sowing rains, initial infestations tended to be low and rates of increase high.The relationship of these findings to those of Cowland & Hanna (1950) and Hanna (1950) are discussed; the hypothesis that pre-sowing mud-splash is a major factor controlling numbers of E. lybica in the Sudan Gezira is discounted, although it is accepted that this factor temporarily reduces populations.The rate of increase of infestations of E. lybica was found to be positively correlated with the concentration of nitrogen recorded 2–4 weeks previously in the cotton leaf. This concentration affected not only the rate of increase of the initial colonisers, but also the rate of recovery of populations during November and December after spray-applications of DDT. The nitrogen concentration in the leaf was increased by nitrogenous fertiliser, with a corresponding increase in infestations of E. lybica. It was also found to be negatively correlated with pre-sowing rains, which, if low, prevent the nitrate in the top 12 in. of Gezira soil being washed to lower levels, but the data presented provide no evidence that the relationship is causal.It is concluded that localities and seasons of poor pre-sowing rains favour a high rate of increase of small populations of E. lybica because of high nitrogen concentration in cotton leaves during September and October. This tendency is augmented by application of nitrogenous fertiliser. A regression equation relating the peak infestations of E. lybica with pre-sowing rainfall and with nitrogenous fertiliser is given and the infestations computed from this are shown not to differ significantly from those recorded in the Gezira as a whole, and in the four main divisions of it separately, during the eight years 1949–1956.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Reference33 articles.

1. How far do insects travel?;Williams;Rep. Rothamst. exp. Sta. 1951,1952

2. On the Reproduction of Organisms with overlapping Generations

3. The large-scale Control of the Cotton Jassid in the Gezira and White Nile Areas of the Sudan

4. Observations on leafhoppers (Homoptera fam. Jassidae) in the Gezira in 1929;Michelmore;Bull. Wellcome trop. Res. Lab. (ent. Sect.),1930

5. Notes on the Green Leafhopper, Empoasca lybica, Berg. (Hom. Jassid.) in Palestine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3