Introducing improvements in the mass rearing of the housefly: biological, morphometric and genetic characterization of laboratory strains

Author:

Pastor B.,Martínez-Sánchez A.S.,Ståhls G.A.,Rojo S.

Abstract

AbstractUnderstanding the biology of the housefly (Musca domestica L.) is crucial for the development of mass-rearing protocols in order to use this insect as a degradation agent for livestock waste. In this study, the biological and genetic differences between different laboratory strains of M. domestica were analysed. Additionally, hybrids were obtained by mixing the strains and their biological parameters were also measured. The three strains of M. domestica presented differences in their biological and morphological parameters, the main differences were: size, egg production and developmental time. The strain A (specimens from Central Europe) had the best qualities to be used in mass-rearing conditions: it produced the largest quantities of eggs (5.77±0.38 eggs per female per day), the individuals were larger (12.62±0.22 mg) and its developmental time was shorter (15.22±0.21 days). However, the strain C (specimens from SW Europe) produced the fewest eggs (3.15±0.42 eggs per female per day) and needed 18.16±0.49 days to develop from larva to adult, whilst the females from strain B (from South America) produced 4.25±0.47 eggs per day and needed 17.11±0.36 days to complete its development. Genetic analysis of the original laboratory strains showed four different mtDNA cytochrome c oxidase subunit I haplotypes. Statistical parsimony network analysis showed that the SW Europe and South-American strains shared haplotypes, whereas the Central Europe strain did not. Upon hybridizing the strains, variations in egg production and in developmental time were observed in between hybrids and pure strains, and when mixing Central European and South-American strains only males were obtained.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Reference22 articles.

1. SELECTION AT TWO LEVELS IN HYBRID POPULATIONS OF MUSCA DOMESTICA

2. Musca domestica, a window on the evolution of sex-determining mechanisms in insects;Dübendorfer;International Journal of Developmental Biology,2002

3. Geographic origin affects larval competitive ability in European populations of the blow fly, Lucilia sericata

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hopf Bifurcation Analysis of a Housefly Model with Time Delay;International Journal of Bifurcation and Chaos;2023-07

2. Lipid quantity and composition vary between three European house fly strains;Entomologia Experimentalis et Applicata;2023-02-06

3. Progress and challenges of insects as food and feed;New Aspects of Meat Quality;2022

4. Insects as feed: house fly or black soldier fly?;Journal of Insects as Food and Feed;2020-06-09

5. Small-Scale Fly Larvae Production for Animal Feed;Edible Insects in Sustainable Food Systems;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3