Author:
Busch-Petersen E.,Baumgartner H.
Abstract
AbstractGenetic systems have been developed in several insect species for separating males and females prior to releasing sterilized males in pest control programmes using the sterile insect technique. The systems generally depend on translocating a readily selectable gene onto the Y chromosome. A potential source of instability in such a system is genetic recombination in the male. Although such recombination was originally thought to be absent in most cyclorrhaphous Diptera, low levels have recently been found. We have developed a computer model which simulates the progression of instability in the presence of male recombination, which can be used to assess the influence of rate of recombination in combination with a range of associated genetic and biological parameters. Male recombination alone or fitness of the Y-linked translocation were found to contribute relatively little to the rate of progression of instability. By contrast reduced fitness or mating competitiveness associated with the selectable gene had a strong effect. The sex ratio and the ratio of carriers to non-carriers of the selectable gene showed patterns characteristic of the parameters modelled. The relevance of such data to the development of suitable strains for genetic sex-separation and the replacement of strains under mass rearing conditions are discussed.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献