Abstract
AbstractThe hypothesis that spring emergence of the pea moth Cydia nigricana is regulated by environmental factors, particularly photoperiod and temperature, was examined in this study. A long-term field study was conducted in two distinct pea-growing areas in Hesse and Saxony, Germany. Strong correlations between the flight phenology of pea moth in spring and air temperature, soil temperature, solar radiation and day length were demonstrated for three consecutive years. In laboratory experiments, we elucidated the interaction of different photoperiod-temperature regimes, verifying cumulative day-degree data in relation to pea moth emergence rates in the field. C. nigricana temperature sensitivity is apparently initiated by long day conditions with a critical day length of about 14 h L:D. The overall results contribute to the theory that photoperiod and temperature interact as regulatory cues for spring emergence of C. nigricana. The findings are discussed in terms of the development of predictive models and decision support systems for pea moth control.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献