Abstract
AbstractHigh levels (>1000-fold) of resistance to DDT, permethrin and deltamethrin were detected in Culex quinquefasciatus Say from Saudi Arabia. Biochemical enzyme and metabolic studies indicated that there is evidence for a metabolic basis to both the organochlorine and pyrethroid resistances. Electrophysiological studies indicated that there is no kdr-type mechanism conferring resistance to the pyrethroid lambda-cyhalothrin neurophysiologically, although there is evidence of cross-resistance between DDT and the pyrethroids by bioassays. There was a change in the oxidase system in both the DDT- and permethrin-selected strains and an increase in glutathione transferase activity in the DDT-selected line. Metabolic studies indicated that both oxidases and glutathione transferases are involved with DDT resistance as DDA and DDE were the predominant metabolites after a 5-h in-vitro incubation period. Permethrin resistance is likely to involve an increase in oxidative degradation, but further metabolic studies are needed to confirm this.
Publisher
Cambridge University Press (CUP)
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献