Selection for malathion resistance in Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance

Author:

Muggleton John

Abstract

AbstractA malathion-resistant strain of Oryzaephilus surinamensis (L.) was subjected to selection with malathion for ten generations at three doses, 65, 260 and 390 mg/m2. The relative fitness of the resistant homozygote, the heterozygote and the susceptible homozygote were estimated at each dose and in an untreated control population by comparing the change in frequency of the susceptible homozygote from generation to generation. In the absence of the insecticide, the resistant genotypes had a fitness coefficient of 0·82 compared to the susceptibles, whereas following selection at the highest dose of malathion, the fitness coefficient of the susceptible homozygote was 0 and that of the heterozygote 0·4, compared to the resistant homozygote. With selection at the highest dose of malathion, the frequency of the resistance gene rose from 0·5 to around 1·0 during the experiment, and this was accompanied by a 2·3-fold increase in the resistance factor at the ED50. A model is provided to show how the data collected in these experiments can be used to predict the increase in resistance under various treatment regimes. The model shows that although resistance would be delayed longest at the lowest dose, such a dose would fail to control the pest population. Using the data from these experiments, the model predicts that the best combination of control and delay of the spread of resistance would be achieved by using the highest dose of malathion while allowing the maximum acceptable proportion of beetles to remain untreated.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3