Larval species composition and genetic structures of Carposina sasakii, Grapholita dimorpha, and Grapholita molesta from Korea

Author:

Kwon D.H.,Kwon H.K.,Kim D.H.,Yang C.Y.

Abstract

AbstractRapid determination of the larval species composition and understanding of their genetic structure is important to establish the appropriate management system for multiple species infesting in fruits. We established accurate and rapid diagnostic methods based on multiplex polymerase chain reaction (PCR) diagnostic techniques to discriminate the three major lepidopteran species in orchard, Carposina sasakii, Grapholita dimorpha, and Grapholita molesta. Each species was identified by amplifying species-specific PCR products (375 bp for C. sasakii, 125 and 234 bp for G. dimorpha, and 125 bp for G. molesta). Based on species composition analysis from six types of infested fruits, G. dimorpha constituted the highest proportion (47.8%), followed by 35.2 and 13.5% for G. molesta and C. sasakii, respectively. Interestingly, high prevalence was found in G. dimorpha and G. molesta for plum and peach, respectively. Based on genetic diversity analysis, the three insect species exhibited moderate or high haplotype diversity and low nucleotide diversity, ranging from 0.319 to 0.699 and 0.0006 to 0.0045, respectively. Demographic expansion was not detected according to either a neutrality test or mismatch distribution analysis. Moreover, no significant genetic structure corresponding to province, host plant, fruit type, or collection period was observed. These results suggest that the population of each species would have high dispersal ability following fruit-generating periods via intrinsic host adaptation ability regardless of the spatial and temporal conditions. Determination of larval composition on fruit is valuable for establishing appropriate management systems that take the species into consideration; additionally, population genetic approaches can be utilized to understand the effects of environmental factors (province, host fruit, fruit type, etc.) on population structures.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3