Disturbance and competition drive diversity effects in cabbage–aphid–onion systems with intra-specific genetic variation

Author:

Guilbaud C.S.E.ORCID,Khudr M.S.

Abstract

AbstractDecreased reliance on pesticides can be achieved through a clever use of eco-evolutionary knowledge via intercropping economically valuable crops with companion plants that can hamper pest outbreaks. We created a greenhouse multi-layered microcosm system to test two potato peach aphid clones, performing alone or in competition, on mixes of genetically variable cultivars of cabbage, with and without onion. The onion acted as a nuisance/disturbance for the pest, which was generally for the benefit of the cabbage albeit both plants sharing space and nutrients. The onion effect was context-specific and differed by aphid genotype. Onion variable nuisance negatively affected the numbers of one aphid genotype (green) across all contexts, while the other genotype (pink) numbers were decreased in two contexts only. However, the green performed better than the pink on all cases of cabbage di-mixes despite its numbers being capped when the onion was present. Further, there was also a general aphid propensity to wander off the plant along with a differential production of winged morphs to escape the onion-affected environments. Moreover, through a comparative increase in dry mass, which was subject to onion and aphid effects, a diversity effect was found where the cabbages of fully genetically variable microcosms sustained similar final dry mass compared with non-infested microcosms. Our findings provide fresh insights into the use of multi-layered contextual designs that not only allow disentangling the relative effects of genetic variation and modes of interaction, but also help integrate their benefits into pest management in view of companion planting.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agroforestry as an Effective Tool for Pest Management in the Era of Climate Change;Agroforestry Solutions for Climate Change and Environmental Restoration;2024

2. Essential oils-based repellents for the management of Myzus persicae and Macrosiphum euphorbiae;Journal of Pest Science;2021-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3