Effect of monochromatic light on light adaptation and opsin expression in Ectropis grisescens

Author:

Shan YaoORCID,Xu Manfei,Tan Chang,Chen Zongmao,Wang Guochang,Bian LeiORCID

Abstract

AbstractLight has a substantial effect on the behaviour and physiology of nocturnal moths. Ectropis grisescens is a major nocturnal tea pest in China, and light traps are commonly used to control geometrid moths because of their positive phototaxis. However, some moths gather around light traps and enter the light adaptation state, which decreases the efficacy of light traps in controlling this pest. We identified opsin genes and the spectral sensitivities of the photoreceptors of E. grisescens moths. We also determined the effects of several monochromatic lights on opsin gene expression and light adaptation. We detected three types of opsin genes and six spectral sensitive peaks (at 370, 390, 480, 530, 550, and 580 nm). We also observed significant changes in the diurnal rhythm of opsin gene expression under different light conditions. When active males were suddenly exposed to different monochromatic lights, they quickly entered the light adaptation state, and the adaptation time was negatively correlated with the light intensity. Males were most sensitive to 390 nm wavelengths, followed by 544 nm, 457 nm, and 593 nm. Red light (627 nm) did not affect the activity of E. grisescens males but had detectable physiological effects.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3