Alteration of the phagocytosis and antimicrobial defense of Octodonta nipae (Coleoptera: Chrysomelidae) pupae to Escherichia coli following parasitism by Tetrastichus brontispae (Hymenoptera: Eulophidae)

Author:

Meng E.,Li J.,Tang B.,Hu Y.,Qiao T.,Hou Y.,Lin Y.,Li J.,Chen Z.

Abstract

AbstractAlthough parasites and microbial pathogens are both detrimental to insects, little information is currently available on the mechanism involved in how parasitized hosts balance their immune responses to defend against microbial infections. We addressed this in the present study by comparing the immune response between unparasitized and parasitized pupae of the chrysomelid beetle, Octodonta nipae (Maulik), to Escherichia coli invasion. In an in vivo survival assay, a markedly reduced number of E. coli colony-forming units per microliter was detected in parasitized pupae at 12 and 24 h post-parasitism, together with decreased phagocytosis and enhanced bactericidal activity at 12 h post-parasitism. The effects that parasitism had on the mRNA expression level of selected antimicrobial peptides (AMPs) of O. nipae pupae showed that nearly all transcripts of AMPs examined were highly upregulated during the early and late parasitism stages except defensin 2B, whose mRNA expression level was downregulated at 24 h post-parasitism. Further elucidation on the main maternal fluids responsible for alteration of the primary immune response against E. coli showed that ovarian fluid increased phagocytosis at 48 h post-injection. These results indicated that the enhanced degradation of E. coli in parasitized pupae resulted mainly from the elevated bactericidal activity without observing the increased transcripts of target AMPs. This study contributes to a better understanding of the mechanisms involved in the immune responses of a parasitized host to bacterial infections.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Reference73 articles.

1. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae): Effects of parasitism on differential hemocyte counts, micro- and ultra-structures of host hemocytes

2. Insect antimicrobial peptides and their applications

3. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis

4. Molecular identification and pathogenicity assay on Metarhizium against Octodonta nipae (Coleoptera: Chrysomelidae);Xu;Chinese Journal of Applied Entomology,2011

5. Effects of host plants on the developmental duration, feeding and reproduction of the nipa palm hispid, Octodonta nipae (Coleoptera: Chrysomelidae);Xi;Acta Entomologica Sinica,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3