Detection of parasitism in diamondback moth,Plutella xylostella(L.), using differential melanization and coagulation reactions

Author:

Li D.,Schellhorn N.,Schmidt O.

Abstract

AbstractDiamondback moth (DBM),Plutella xylostella, is known for causing damage toBrassicacrops and developing resistance to chemical and biological pesticides; it has become one of the most difficult pests to manage in many regions around the world. The only way to reduce reliance on pesticides is to maximize the role of natural control agents for integrated pest management programs and be able to incorporate the mortality from control agents into pest control decision-making. More than 90 hymenopterous parasitoids are associated with DBM worldwide; among them,Diadegma semiclausum, is a major endoparasitoid ofP. xylostella. To optimize parasitism of pests in pest control decision-making, it is necessary to develop rapid and simple methods for distinguishing parasitized from non-parasitized larvae in the field. Here we report on a number of diagnostic tools to identify parasitized larvae. One is based on differential melanization reactions in hemolymph due to immune suppression in parasitized larvae. The lack of coagulation reactions in hemolymph provides a simple initial test, where squashing a non-parasitized larva onto nitrocellulose membrane traps chlorophyll-containing gut content on the membrane leaving a green dot of clotted gut material. However, in immune-suppressed parasitized larvae, the gut content was washed away in absence of coagulation reactions and the membrane lacks a green dot. This tool alone or combined with others, allows quick detection of parasitized caterpillars in the field. We further showed that the antibody MAb 9A5 can be used to detectD. semiclausumparasitized larvae of DBM in Western blots.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3