Salivary proteins of plant-feeding hemipteroids – implication in phytophagy

Author:

Sharma A.,Khan A.N.,Subrahmanyam S.,Raman A.,Taylor G.S.,Fletcher M.J.

Abstract

AbstractMany hemipteroids are major pests and vectors of microbial pathogens, infecting crops. Saliva of the hemipteroids is critical in enabling them to be voracious feeders on plants, including the economically important ones. A plethora of hemipteroid salivary enzymes is known to inflict stress in plants, either by degrading the plant tissue or by affecting their normal metabolism. Hemipteroids utilize one of the following three strategies of feeding behaviour: salivary sheath feeding, osmotic-pump feeding and cell-rupture feeding. The last strategy also includes several different tactics such as lacerate-and-flush, lacerate-and-sip and macerate-and-flush. Understanding hemipteroid feeding mechanisms is critical, since feeding behaviour directs salivary composition. Saliva of the Heteroptera that are specialized as fruit and seed feeders, includes cell-degrading enzymes, auchenorrhynchan salivary composition also predominantly consists of cell-degrading enzymes such as amylase and protease, whereas that of the Sternorhyncha includes a variety of allelochemical-detoxifying enzymes. Little is known about the salivary composition of the Thysanoptera. Cell-degrading proteins such as amylase, pectinase, cellulase and pectinesterase enable stylet entry into the plant tissue. In contrast, enzymes such as glutathione peroxidase, laccase and trehalase detoxify plant chemicals, enabling the circumvention of plant-defence mechanisms. Salivary enzymes such as M1-zinc metalloprotease and CLIP-domain serine protease as inAcyrthosiphon pisum(Aphididae), and non-enzymatic proteins such as apolipophorin, ficolin-3-like protein and ‘lava-lamp’ protein as inDiuraphis noxia(Aphididae) have the capacity to alter host-plant-defence mechanisms. A majority of the hemipteroids feed on phloem, hence Ca++-binding proteins such as C002 protein, calreticulin-like isoform 1 and calmodulin (critical for preventing sieve-plate occlusion) are increasingly being recognized in hemipteroid–plant interactions. Determination of a staggering variety of proteins shows the complexity of hemipteroid saliva: effector proteins localized in hemipteran saliva suggest a similarity to the physiology of pathogen–plant interactions.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3