Biological parameters of interbreeding subspecies of Meccus phyllosomus (Hemiptera: Reduviidae: Triatominae) in western Mexico

Author:

Martínez-Ibarra J. A.,Nogueda-Torres B.,Cárdenas-De la Cruz M. Á.,Villagrán M. E.,de Diego-Cabrera J. A.,Bustos-Saldaña R.

Abstract

AbstractUnderstanding the biological parameters of some triatomine subspecies of Meccus phyllosomus (Burmeister) is a crucial first step in estimating the epidemiological importance of this group. Biological parameters related to egg eclosion, egg-to-adult development time, number of blood meals to moult, percentage of females at the end of the cycle, number of laid eggs, and the accumulative mortality for each instar of three M. phyllosomus subspecies [Meccus phyllosomus pallidipennis (Stål), Meccus phyllosomus longipennis (Usinger), and Meccus phyllosomus picturatus (Usinger)] as well as their laboratory hybrids were evaluated and compared. No significant differences (P > 0.05) were recorded among the experimental hybrids (M. p. longipennis × M. p. pallidipennis, M. p. longipennis × M. p. picturatus, M. p. pallidipennis × M. p. picturatus) and reciprocal cohorts. In five of the six studied parameters (egg eclosion, egg-to-adult development time, number of blood meals to moult, number of laid eggs and accumulative mortality), with the exception of the non-significant percentage of females obtained among all the studied cohorts, at least one of the parental cohorts in each set of crosses exhibited better fitness results than by those of their hybrid descendants. The lack of hybrid fitness in our study indicates the maintenance of reproductive isolation of parental genotypes. Moreover, the results lead us to propose that an incipient speciation process by distance is currently developing among the three studied subspecies, increasing the differences between them that modify the transmission efficiency of Trypanosoma cruzi to human beings in Mexico.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3