Detection and substrate portrayal on the serum phenoloxidase activity from the grub of rhinoceros beetle,Oryctes rhinoceros

Author:

Marieshwari Balashanmuga NehruORCID,Prithi ChandranORCID,Nivetha RamanathanORCID,Bhuvaragavan SreeramuluORCID,Sundaram JanarthananORCID

Abstract

AbstractPhenoloxidase (PO) is a significant biomolecule involved in humoral defence mechanism of invertebrates. Spontaneous melanization of insect haemolymph is the major hinderance for studying PO activity, as haemolymph was collected devoid of phenylthiourea. In the study, no visible melanization was observed in crude serum from the grub ofOryctes rhinocerosup to 30 min of incubation amongst crude haemolymph, diluted haemolymph, crude serum and diluted serum that were subjected to visual observation for spontaneous melanization reaction. Accordingly, crude serum was taken for evaluating PO activity. At the same time, as PO substrates tend to auto-oxidize and provide false optical density value, tris-buffered saline devoid of any substrates were used as blank for PO assays. The ideal wavelength at which maximum PO activity occurred for each substrate, namely, tyrosine, tyramine, dopamine, L-dopa, DL-dopa, catechol, protocatechuic acid and pyrogallol was determined as 407, 410, 429, 465, 403, 466, 428 and 400 nm, respectively. Additionally, time course of oxidation for each phenolic substrate by the serum PO were examined and DL-dopa was identified as the specific substrate for serum PO in the grub ofO. rhinoceros. Furthermore, maximum PO activity was observed at 5 min of incubation for 10 mM of DL-dopa that was considered as optimum concentration. The ideal pH and temperature for serum PO activity was observed as 7.5 and 20°C, respectively. These results suggested that standardizing a suitable substrate is an essential prerequisite to evaluate the real PO activity of serum which might significantly fluctuate in each insect model.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3