Author:
Halberstam H.,Laxton R. R.
Abstract
If the set K of r+1 distinct integers k0, k1 …, kr has the property that the (r+1)r differences ki–kj (0≦i, j≦r, i≠j) are distinct modulo r2+r+1, K is called a perfect difference set modr2+r+1. The existence of perfect difference sets seems intuitively improbable, at any rate for large r, but in 1938 J. Singer [1] proved that, whenever r is a prime power, say r = pn, a perfect difference set mod p2n+pn+1 exists. Since the appearance of Singer's paper several authors have succeeded in showing that for many kinds of number r perfect difference sets mod r2+r+1 do not exist; but it remains an open question whether perfect difference sets exist only when r is a prime power (for a comprehensive survey see [2]).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献