TESTING FOR WHITE NOISE UNDER UNKNOWN DEPENDENCE AND ITS APPLICATIONS TO DIAGNOSTIC CHECKING FOR TIME SERIES MODELS

Author:

Shao Xiaofeng

Abstract

Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box–Pierce test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for dependent white noise. Because of recent popularity of conditional heteroskedastic models (e.g., generalized autoregressive conditional heteroskedastic [GARCH] models), which imply nonlinear dependence with zero autocorrelation, there is a need to understand the asymptotic properties of the existing test statistics under unknown dependence. In this paper, we show that the asymptotic null distribution of the Box–Pierce test statistic with general weights still holds under unknown weak dependence as long as the lag truncation number grows at an appropriate rate with increasing sample size. Further applications to diagnostic checking of the autoregressive moving average (ARMA) and fractional autoregressive integrated moving average (FARIMA) models with dependent white noise errors are also addressed. Our results go beyond earlier ones by allowing non-Gaussian and conditional heteroskedastic errors in the ARMA and FARIMA models and provide theoretical support for some empirical findings reported in the literature.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conditional mean dimension reduction for tensor time series;Computational Statistics & Data Analysis;2024-11

2. Reprint of: Robust inference on correlation under general heterogeneity;Journal of Econometrics;2024-05

3. Robust inference on correlation under general heterogeneity;Journal of Econometrics;2024-03

4. Another look at bandwidth-free inference: a sample splitting approach;Journal of the Royal Statistical Society Series B: Statistical Methodology;2023-10-20

5. Optimal estimating function for weak location‐scale dynamic models;Journal of Time Series Analysis;2023-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3