Abstract
We study the finite-sample bias and mean squared error, when properly defined, of the sample coefficient of variation under a general distribution. We employ a Nagar-type expansion and use moments of quadratic forms to derive the results. We find that the approximate bias depends on not only the skewness but also the kurtosis of the distribution, whereas the approximate mean squared error depends on the cumulants up to order 6.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献