PREDICTION AND SIGNAL EXTRACTION OF STRONGLY DEPENDENT PROCESSES IN THE FREQUENCY DOMAIN

Author:

Hidalgo J.,Yajima Y.

Abstract

We frequently observe that one of the aims of time series analysts is to predict future values of the data. For weakly dependent data, when the model is known up to a finite set of parameters, its statistical properties are well documented and exhaustively examined. However, if the model was misspecified, the predictors would no longer be correct. Motivated by this observation and because of the interest in obtaining adequate and reliable predictors, Bhansali (1974, Journal of the Royal Statistical Society, Series B 36, 61–73) examined the properties of a nonparametric predictor based on the canonical factorization of the spectral density function given in Whittle (1963, Prediction and Regulation by Linear Least Squares) and known as FLES.However, the preceding work does not cover the so-called strongly dependent data. Because of the interest in this type of processes, one of our objectives in this paper is to examine the properties of the FLES for these processes. In addition, we illustrate how the FLES can be adapted to recover the signal of a strongly dependent process, showing its consistency. The proposed method is semiparametric in the sense that, in contrast to other methods, we do not need to assume any particular model for the noise except that it is weakly dependent.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3