Author:
Bera Anil K.,Galvao Antonio F.,Wang Liang,Xiao Zhijie
Abstract
We study the asymptotic covariance function of the sample mean and quantile, and derive a new and surprising characterization of the normal distribution: the asymptotic covariance between the sample mean and quantile is constant across all quantiles,if and only ifthe underlying distribution is normal. This is a powerful result and facilitates statistical inference. Utilizing this result, we develop a new omnibus test for normality based on the quantile-mean covariance process. Compared to existing normality tests, the proposed testing procedure has several important attractive features. Monte Carlo evidence shows that the proposed test possesses good finite sample properties. In addition to the formal test, we suggest a graphical procedure that is easy to implement and visualize in practice. Finally, we illustrate the use of the suggested techniques with an application to stock return datasets.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献