Abstract
This paper presents a number of consistency results for nonparametric kernel estimators of density and regression functions and their derivatives. These results are particularly useful in semiparametric estimation and testing problems that rely on preliminary nonparametric estimators, as in Andrews (1994, Econometrica 62, 43–72). The results allow for near-epoch dependent, nonidentically distributed random variables, data-dependent bandwidth sequences, preliminary estimation of parameters (e.g., nonparametric regression based on residuals), and nonparametric regression on index functions.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献