Author:
Davis Richard A.,Dunsmuir William T.M.
Abstract
This paper considers maximum likelihood estimation for the moving average parameter θ in an MA(1) model when θ is equal to or close to 1. A derivation of the limit distribution of the estimate θLM, defined as the largest of the local maximizers of the likelihood, is given here for the first time. The theory presented covers, in a unified way, cases where the true parameter is strictly inside the unit circle as well as the noninvertible case where it is on the unit circle. The asymptotic distribution of the maximum likelihood estimator subMLE is also described and shown to differ, but only slightly, from that of θLM. Of practical significance is the fact that the asymptotic distribution for either estimate is surprisingly accurate even for small sample sizes and for values of the moving average parameter considerably far from the unit circle.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献