Abstract
An I(0) process is commonly defined as a process that satisfies a functional central limit theorem, i.e., whose scaled partial sums converge weakly to a Wiener process, and an I(1) process as a process whose first differences are I(0). This paper establishes that with this definition, it is impossible to consistently discriminate between I(0) and I(1) processes. At the same time, on a more constructive note, there exist consistent unit root tests and also nontrivial inconsistent stationarity tests with correct asymptotic size.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献