Abstract
This paper considers the consistency property of some test statistics based on a time series of data. While the usual consistency criterion is based on keeping the sampling interval fixed, we let the sampling interval take any equispaced path as the sample size increases to infinity. We consider tests of the null hypotheses of the random walk and randomness against positive autocorrelation (stationary or explosive). We show that tests of the unit root hypothesis based on the first-order correlation coefficient of the original data are consistent as long as the span of the data is increasing. Tests of the same hypothesis based on the first-order correlation coefficient of the first-differenced data are consistent against stationary alternatives only if the span is increasing at a rate greater than T½, where T is the sample size. On the other hand, tests of the randomness hypothesis based on the first-order correlation coefficient applied to the original data are consistent as long as the span is not increasing too fast. We provide Monte Carlo evidence on the power, in finite samples, of the tests Studied allowing various combinations of span and sampling frequencies. It is found that the consistency properties summarize well the behavior of the power in finite samples. The power of tests for a unit root is more influenced by the span than the number of observations while tests of randomness are more powerful when a small sampling frequency is available.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献