Functional Forms of Characteristic Functions and Characterizations of Multivariate Distributions

Author:

Chikuse Yasuko

Abstract

During the Oxford Conference of the Econometric Society in 1936, Ragnar Frisch proposed a problem of characterization of distributions based on the property of linear regression of one linear function of random variables on the other. This problem has been solved, partially by Allen [1], and then completely by Rao [24,25], Fix [7], and Laha [13] relaxing the conditions imposed on the component random variables. The purpose of this paper is to solve the above mentioned problem for the multivariate case, characterizing multivariate distributions based on the multivariate linear regression of one linear function of not necessarily i.i.d. random vectors with matrix coefficients on the other. We make some mild assumptions concerning the component random vectors and the related constant matrices. It is shown that the property of multivariate linear regression yields a system of partial differential equations (p.d.e.'s) satisfied by the characteristic functions of the component random vectors. A general solution of this system of p.d.e.'s is given by certain functional forms. Special cases of the general solution give characterizations of the “multivariate generalized stable laws” and the multivariate semistable laws, and a method is presented to characterize the multivariate stable laws.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference30 articles.

1. A characterization of the normal law on Hilbert space;Eaton;Sankhya A,1969

2. A theorem concerning the linearity of regression;Allen;Statistical Research Memorandum,1938

3. Some results on characterizations of the normal and generalized stable laws;Ramachandran;Sankhya A,1968

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3