Testing the Goodness of Fit of a Parametric Density Function by Kernel Method

Author:

Fan Yanqin

Abstract

Let F denote a distribution function defined on the probability space (Ω,,P), which is absolutely continuous with respect to the Lebesgue measure in Rd with probability density function f. Let f0(·,β) be a parametric density function that depends on an unknown p × 1 vector β. In this paper, we consider tests of the goodness-of-fit of f0(·,β) for f(·) for some β based on (i) the integrated squared difference between a kernel estimate of f(·) and the quasimaximum likelihood estimate of f0(·,β) denoted by In and (ii) the integrated squared difference between a kernel estimate of f(·) and the corresponding kernel smoothed estimate of f0(·, β) denoted by Jn. It is shown in this paper that the amount of smoothing applied to the data in constructing the kernel estimate of f(·) determines the form of the test statistic based on In. For each test developed, we also examine its asymptotic properties including consistency and the local power property. In particular, we show that tests developed in this paper, except the first one, are more powerful than the Kolmogorov-Smirnov test under the sequence of local alternatives introduced in Rosenblatt [12], although they are less powerful than the Kolmogorov-Smirnov test under the sequence of Pitman alternatives. A small simulation study is carried out to examine the finite sample performance of one of these tests.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3