Soil moisture, wind speed and depth hoar formation in the Arctic snowpack

Author:

DOMINE FLORENTORCID,BELKE-BREA MARIA,SARRAZIN DENIS,ARNAUD LAURENT,BARRERE MATHIEU,POIRIER MATHILDE

Abstract

ABSTRACTBasal depth hoar that forms in Arctic snowpacks often has a low thermal conductivity, strongly contributing to the snowpack thermal insulance and impacting the permafrost thermal regime. At Ward Hunt Island (Canadian high Arctic, 83°05′N, 74°07′W) almost no depth hoar was observed in spring 2016 despite favorable thermal conditions. We hypothesize that depth hoar formation was impeded by the combination of two factors (1) strong winds in fall that formed hard dense wind slabs where water vapor transport was slow and (2) low soil moisture that led to rapid ground cooling with no zero-curtain period, which reduced soil temperature and the temperature gradient in the snowpack. Comparisons with detailed data from the subsequent winter at Ward Hunt and from Bylot Island (73°09′N, 80°00′W) and with data from Barrow and Alert indicate that both high wind speeds after snow onset and low soil moisture are necessary to prevent Arctic depth hoar formation. The role of convection to form depth hoar is discussed. A simple preliminary strategy to parameterize depth hoar thermal conductivity in snow schemes is proposed based on wind speed and soil moisture. Finally, warming-induced vegetation growth and soil moisture increase should reduce depth hoar thermal conductivity, potentially affecting permafrost temperature.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference47 articles.

1. Physical studies on deposited snow, 1, thermal properties;Yosida;Contribs. Inst. Low Temp. Sci., Hokkaido Univ., Japan,1955

2. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2

3. Extreme ecosystems and geosystems in the Canadian High Arctic: Ward Hunt Island and vicinity

4. Field experiments on the development of depth hoar;Trabant;Geol. Soc. Am. Mem.,1972

5. Evolution of the Snow Area Index of the Subarctic Snowpack in Central Alaska over a Whole Season. Consequences for the Air to Snow Transfer of Pollutants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3