Ice-rise stratigraphy reveals changes in surface mass balance over the last millennia in Dronning Maud Land

Author:

GOEL VIKRAMORCID,MARTÍN CARLOS,MATSUOKA KENICHI

Abstract

ABSTRACTWe use ice flow modelling to simulate the englacial stratigraphy of Blåskimen Island, an ice rise in Dronning Maud Land and elucidate the evolution of this data-sparse region. We apply a thermo-mechanically coupled Elmer/Ice model to a profile along flowlines and through the ice-rise summit, where surface mass balance (SMB), flow velocity and ice stratigraphy were recently measured. We conclude that: (i) the ice rise is presently thickening at a rate of 0.5~0.6 m ice equivalent per year (mieq a−1), which is twice an earlier estimate using the field data and the input–output method; (ii) present thickening started 20–40 years in the past, before which the ice rise was in a steady state; (iii) SMB contrast between the upwind and downwind slopes was stronger than the present value by ~23% (or 0.15 mieq a−1) prior to ~1100 years ago. Since then, this contrast has been decreasing overall. We surmise that these SMB changes are likely a result of synoptic-scale atmospheric changes, rather than local atmospheric changes controlled by local ice topography. Our technique effectively assimilates geophysical data, avoiding the complexity of ice flow beneath the ice divide. Thus, it could be applied to other ice rises to elucidate the recent glacial retreat.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3