Comments on Solar Convection

Author:

Deubner Franz-Ludwig

Abstract

AbstractThis contribution discusses observational aspects of the evolution of individual structures of solar convection.It has been shown, that mesogranulation is a convective phenomenon that fits well into the gap between granulation and supergranulation. Apparently this observation justifies the view that the three members of the granulation family represent sections of a broad continuum of convective motions spanning the range of sizes from a yet unknown fraction of 1 Mm to about 50 Mm. Nevertheless, power spectra of velocity and brightness fluctuations exhibit three maxima, separated by intervals with significantly less power near 3 Mm and 7.5 Mm. Do these gaps give reasons for reconsidering the old idea, that each of the three characteristic scales has its own source layer at a certain depth in the convection zone?Power spectra of the granular energy distribution near the observational limit of spatial resolution suggest a continuous transfer of kinetic energy to smaller eddies by turbulent decay of the larger scale elements. Morphological studies of granular evolution and a comparison of the observed spectral line bisectors with theoretical predictions seem to disprove this idea. These observations imply either that the turbulent cascade, if it exists, is buried in the spatially unresolved part of the power distribution, or that radiative losses ultimately limit the life time of individual granules on all scales.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3