Planetary Systems and Stellar Multiplicity

Author:

Huang Su-Shu

Abstract

AbstractIn this paper we have discussed the origin of planetary systems on one hand and binary and multiple stars on the other. First we show that phenomenological differences between these two kinds of celestial objects are due to their genetic difference. The basic point is that formation of a planetary system around a star has to be a minor event in the life history of the star while formation of a binary or multiple system has to be an event that is important equally to all components of the system. Thus the planetary system evolves from a rotating disk of gaseous and dust particles that comes into being after the star has already been there. It is therefore reasonable to suggest that the rotating disk results from transfer of angular momentum from the central star to the surrounding medium which is likely a residue left over in the process of formation of the central star.Binary and multiple systems cannot be formed in this way because they do not show the characteristics of having come out of a rotating disk. The dominant mechanism of their formation is that they were formed naturally as they are, each from perhaps a single condensation in the interstellar medium. However such a single mechanism of formation cannot satisfactorily explain the observed spread of binaries in mean separations between two components (or equivalently orbital periods). But the disagreement may be removed by including a small number of binaries formed by other processes and by considering the change of orbital elements of binaries after their formation. Trapezia were likely formed also by more than one mechanism.That several stars could be formed, from a single condensation requires the” existence oí pre-stellar nuclei which are briefly: discussed at the end of the paper.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3