Abstract
AbstractIn this paper we have discussed the origin of planetary systems on one hand and binary and multiple stars on the other. First we show that phenomenological differences between these two kinds of celestial objects are due to their genetic difference. The basic point is that formation of a planetary system around a star has to be a minor event in the life history of the star while formation of a binary or multiple system has to be an event that is important equally to all components of the system. Thus the planetary system evolves from a rotating disk of gaseous and dust particles that comes into being after the star has already been there. It is therefore reasonable to suggest that the rotating disk results from transfer of angular momentum from the central star to the surrounding medium which is likely a residue left over in the process of formation of the central star.Binary and multiple systems cannot be formed in this way because they do not show the characteristics of having come out of a rotating disk. The dominant mechanism of their formation is that they were formed naturally as they are, each from perhaps a single condensation in the interstellar medium. However such a single mechanism of formation cannot satisfactorily explain the observed spread of binaries in mean separations between two components (or equivalently orbital periods). But the disagreement may be removed by including a small number of binaries formed by other processes and by considering the change of orbital elements of binaries after their formation. Trapezia were likely formed also by more than one mechanism.That several stars could be formed, from a single condensation requires the” existence oí pre-stellar nuclei which are briefly: discussed at the end of the paper.
Publisher
Cambridge University Press (CUP)