Toward Solving the Mysteries of the Exotic Eclipsing Binary є Aurigae: Two Thousand years of Observations and Future Possibilities

Author:

Guinan Edward F.,DeWarf Laurence E.

Abstract

AbstractThe long period (P = 27.1 yr) eclipsing binary є Aurigae (F0 Ia + disk?) is truly an exotic star. It has a deep eclipse that lasts for nearly two years. This eclipse arises as a huge, cool, flattened disk transits the F-supergiant star. Modeling of the eclipse observations shows that the disk has a radius as large as ∼ 9 AU. Infrared observations indicate that the disk is cool with temperatures between 450 − 1000 K. Yet there is evidence of significant FUV emission also originating from the disk.At present, our knowledge of the mass and luminosity of the binary is still too uncertain to distinguish between two competing models of the system. The high mass model assumes that the F0 supergiant is a normal Pop. I star with a mass appropriate for its spectral type of M ∽ 15 M. It is accompanied by a flattened disk companion with a slightly smaller mass. In this model the disk object is a young proto-stellar or protoplanetary disk. In the low mass model, the F0I star is assumed to be a bloated, old, solar mass post-AGB star. In this case the secondary object is an accretion disk with a mass of 4-5 M. This disk is a remnant of postmain sequence mass transfer that occurred within the last few thousand years. In both models there are still problems explaining the object (or objects) at the center of the disk. Candidates include a pre-main sequence object, a black hole, or a close binary.In this paper we review the properties of ϵ Aurigae and discuss the advances in our understanding of this enigmatic star from observations made since its last eclipse in 1982-1984. With new technologies and advanced instrumentation it is possible that the physical properties of this puzzling binary star will be found during the next decade. Once found, then ϵ Aurigae and its eclipses can be used as a laboratory for exploring (and testing) current astrophysical concepts and theories that include rapid stages of stellar evolution, binary star evolution, and the structure and dynamics of large disks.

Publisher

Cambridge University Press (CUP)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A search for transiting companions in the J1407 (V1400 Cen) system;Astronomy & Astrophysics;2021-08

2. Modeling of a Giant Exoring System Around the Substellar Companion J1407b;Proceedings of the International Astronomical Union;2015-11

3. ϵ Aurigae: A Two Century Long Dilemma Persists;Giants of Eclipse: The ζ Aurigae Stars and Other Binary Systems;2014-11-25

4. Large distance ofε Aurigae inferred from interstellar absorption and reddening;Astronomy & Astrophysics;2012-10

5. Spectral and photometric analysis of the eclipsing binaryϵ Aurigae prior to and during the 2009–2011 eclipse;Astronomy & Astrophysics;2011-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3