Abstract
AbstractWavelength positions of photospheric absorption lines may be affected by surface convection (stellar granulation). Asymmetries and wavelength shifts originate from correlated velocity and brightness patterns: rising (blueshifted) elements are hot (bright), and convective blueshifts result from a larger contribution of such blueshifted photons than of redshifted ones from the sinking and cooler (darker) gas. For the Sun, the effect is around 300 m s−1, expected to increase in F-type stars, and in giants. Magnetic fields affect convection and induce lineshift variations over stellar activity cycles. A sufficient measuring precision reveals also the temporal variability of line wavelengths (due to the evolution of granules on the stellar surface). A major future development to come from adaptive optics and optical interferometry will be the study of wavelength variations across spatially resolved stars, together with their spatially resolved time variability. Thus, precise radial velocities should soon open up new vistas in stellar atmospheric physics.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献