Use of CCDs in Schmidt Telescopes for the Investigation of Hα Emission of Flare Stars

Author:

Szécsényi-Nagy Gábor

Abstract

AbstractThe use of Schmidt telescopes in their traditional mode for the detection of stellar flares and for the UV and PG photometry of these stars proved to be very productive. The fast optical system and reliable sensitivity of modern photographic emulsions resulted in a photometric time-resolution of several minutes even in the case of distant objects. One of the most important characteristics of flare stars may be the tendency for coexistence with more massive and more luminous member stars of young stellar aggregates (mainly open clusters). Although the vast majority of flare stars discovered seem to belong to clusters, a great many of them are neighbours of our sun. These can be investigated in depth because a sufficient number of their photons can be collected and recorded in narrow photometric bands or even in spectra of good resolution. The direct comparison of solar vicinity flare stars with flare-active members of distant clusters has been almost impossible. However recent developments in silicon-based photon-detecting technology offer the advantage of incredibly high detector quantum efficiency (DQE) in many spectral regions where photographic materials never reached an acceptable level. Hα emission is one of the most characteristic features of flare stars, and the wavelength of Hα photons fits extremely well with the peak of the spectral sensitivity curves of silicon photon detectors. CCD chips placed in the focal surface of Schmidt telescopes seem to be very promising for the future investigation of Hα emission of flare stars.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3