Spiral Shocks in Accretion Disks with SPH

Author:

Murray James Rhys

Abstract

AbstractSmoothed Particle Hydrodynamics (SPH) is now seen as a numerical scheme well suited to the study of accretion disks. SPH simulations have been conducted of cataclysmic variable disks (Lubow 1991, Murray 1996, Armitage and Livio 1996), galactic disks (Artymowicz and Lubow 1989), and protostellar disks (Artymowicz and Lubow 1994). It is therefore important to test the technique against theory and other numerical results to obtain an estimate of the accuracy and reliability of SPH in this context. Previously SPH has been tested against standard stationary and time-dependent results of viscous thin disk theory (Murray 1996). Strictly these tests relate to disks where ‘viscous’ terms dominate pressure terms in the equations of motion.In this paper we describe tests of the code more appropriate for hot disks where pressure forces are relatively more important than viscosity. Specifically we consider the form of the spiral density waves that can be excited in a disk by a perturbing gravitational potential. Very low mass perturbing bodies excite linear spiral waves which redistribute angular momentum in the disk. For increasingly massive perturbers, the disk response becomes nonlinear and eventually shocks form. In the standard formulation of SPH, an artificial viscosity term is added to the SPH equations to improve shock capture. This is equivalent to introducing a fixed ratio of shear to bulk viscosity into the equations of motion. In Eulerian schemes, artificial viscosity has been discarded in favour of other more accurate, less dissipative schemes for resolving shocks. The continued use of artificial viscosity in SPH has become a source of ‘friction’ between numericists. The simulations described here demonstrate the scheme’s ability to resolve spiral shocks, and show that SPH is a valuable tool for probing the structure of tidally perturbed accretion disks.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3