Author:
Labov S.,Silver E.,Landis D.,Madden N.,Goulding F.,Beeman J.,Haller E.,Rutledge J.,Bernstein G.,Timbie P.
Abstract
AbstractIn our x-ray calorimetry effort, we have developed several techniques which may be helpful to other groups working in this field. We are studying several different monolithic and composite calorimeter designs. In our readout configuration, the preamplifier circuit employs negative voltage feedback which allows us to accurately measure the temporal profile of the thermal pulse produced by an x-ray absorbed in a micro-calorimeter. Rise times of less than two microseconds have been observed in monolithic devices operating at .3 K. Furthermore, the feedback preamplifier can be configured for either positive or negative electro-thermal feedback. This preamplifier system is followed by an analog pulse shaping amplifier with a frequency response that can be adjusted to yield the maximum signal to noise ratio for a given thermal response of the calorimeter. In addition, we have developed several diagnostic procedures which have been useful in determining the operating and noise characteristics of our devices. These include an infrared light-emitting diode which flashes a discrete amount of energy on to the calorimeter, and a capacitively coupled test input to the preamplifier which allows us to directly determine the total noise in the thermal detection system. Finally, we are developing an adiabatic demagnetization refrigerator with a temperature control system that is designed to stabilize the 0.1 K cold stage to better than 8 μK. This is required for a resistive thermal detector with resolving power of 1000.
Publisher
Cambridge University Press (CUP)