Interactions between the nitrergic and the endocannabinoid system in rats exposed to the elevated T-maze

Author:

Batista Luara AugustaORCID,de Araújo Moreira Fabricio,Aguiar Daniele Cristina de

Abstract

Abstract Objective: The aim of this study was to test the hypothesis that synthesis of nitric oxide (NO) and activation of CB1 receptors have opposite effects in a behavioural animal model of panic and anxiety. Methods: To test the hypothesis, male Wistar rats were exposed to the elevated T-maze (ETM) model under the following treatments: L-Arginine (L-Arg) was administered before treatment with WIN55,212-2, a CB1 receptor agonist; AM251, a CB1 antagonist, was administered before treatment with L-Arg. All treatments were by intraperitoneal route. Results: The CB1 receptor agonist, WIN55,212-2 (1 mg/kg), induced an anxiolytic-like effect, which was prevented by pretreatment with an ineffective dose of L-Arg (1 mg/kg). Administration of AM251 (1 mg/kg), a CB1 antagonist before treatment with L-Arg (1 mg/kg) did not produce anxiogenic-like responses. Conclusion: Altogether, this study suggests that the anxiolytic-like effect of cannabinoids may occur through modulation of NO signalling.

Publisher

Cambridge University Press (CUP)

Subject

Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3