Anatomical Intelligence: Live coding as performative dissection

Author:

Chicau JoanaORCID,Reus JonathanORCID

Abstract

This article describes the method of ‘dissective’ live coding, as developed through the artistic-research project Anatomies of Intelligence. In this work we investigate how live coding can be used as an approach for performative explorations of a data corpus and a machine learning algorithm operating on this corpus. The artistic framework of this project collides early Enlightenment-era anatomical epistemologies with contemporary machine learning, creating a fertile space for novel, embodied artistic methods to emerge. We engage audiences in an immersive, live-coded experience where image and sound are driven by our dissective approach, revealing the underlying rhythms and structures of a machine learning algorithm running live on an artist-made dataset. To support these performances we have developed a custom browser-based software, the Networked Theatre, used for both hybrid in-person/online audiovisual performances. In this article we describe this work and reflect on our experience as performers and audience feedback, which suggests that our dissective method of live coding, based on examining ‘ready-made’ algorithms, offers a unique experiential entryway into the bodies of machine learning and data corpi.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Music

Reference38 articles.

1. Grima: A Distinct Emotion Concept?

2. Pirrò, D. and Rutz, H. 2022. ALMAT – Continuous Exposition, Research Catalogue. www.researchcatalogue.net/view/381565/381566/0/0 (accessed: 17 January 2023).

3. Ward, A. , Rohrhuber, J. , Olofsson, F. , McLean, A. , Griffiths, D. , Collins, N. and Alexander, A. 2004. Live Algorithm Programming and a Temporary Organisation for its Promotion. Proceedings of the README Software Art Conference, 289: 290.

4. Monteverdi, A. 2020. Il teatro dell’algoritmo: Umanesimo Artificiale per le Residenze Digitali – Digital Performance. www.annamonteverdi.it/digital/il-teatro-dellalgoritmo-umanesimo-artificiale-per-le-residenze-digitali/ (accessed 17 January 2023).

5. Han, F. and Reus, J. 2018. Perform_Tech Conversation Series: Jonathan Reus. www.composerfh.com/perform-tech (accessed 17 July 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3