The Limitations of Representing Sound and Notation on Screen

Author:

Vickery Lindsay

Abstract

Animated screen-based notation and visual representation of sound provide an important solution to visualising a range of musical phenomena and techniques including continuous parametrical changes, synchronisation with prerecorded audio or live processing, and nonlinear formal organisation. The limitations of human visual capabilities, however, place some constraints upon the efficacy of screen-based representation, particularly in regard to notation reading. Findings from sightreading studies exploring the manner in which notation is encoded, processed and executed are examined with the aim of identifying the perceptual and practical boundaries of presenting animated notation on screen. The development of efficient visual representation is proposed as an important requirement for alleviating the issues created by the time constraints of reading on screen. Studies in semantics and cross-modal activation are discussed as a foundation for the expansion of approaches to the visualisation of sound.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Music

Reference61 articles.

1. Marks L. E. and Odgar E. C. 2005. Developmental Constraints on Theories of Synesthesia. Synesthesia: Perspectives from Cognitive Neuroscience. New York: Oxford University Press, 214–36.

2. The role of scanpaths in the recognition of random shapes

3. McClelland C. and Alcorn M. 2008. Exploring New Composer/Performer Interactions Using Real-Time Notation. International Computer Music Conference ʼ08. Belfast, Northern Ireland.

4. The Information Age and the Printing Press: Looking Backward to See Ahead

5. The Visual Sound-Shapes of Spectromorphology: an illustrative guide to composition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3