A generative-based design methodology to enable the democratisation of 3D printing

Author:

Goudswaard MarkORCID,Nassehi Aydin,Hicks Ben

Abstract

Abstract 3D printing technologies, such as material extrusion (MEX), hold the potential to revolutionise manufacturing by providing individuals without traditional manufacturing capabilities with powerful and affordable resources. However, widespread adoption is impeded by the lack of user-friendly design tools due to the necessity of domain-specific expertise in computer-aided design (CAD) software and the overwhelming level of design freedom afforded by the MEX process. To overcome these barriers and facilitate the democratisation of design (DoD), this article introduces an innovative, generative-based design (GBD) methodology aimed at enabling non-technical users to create functional components independently. The novelty of this methodology lies in its capacity to simplify complex design tasks, making them more accessible to non-designers. The proposed methodology was tested in the design of a load-bearing part, yielding a functional component within two design iterations. A comparative analysis with the conventional CAD-based process revealed that the GBD methodology enables the DoD, reflected in a 68% reduction in design activities and a decrease in design difficulty of 62% in requisite know-how and a 55% in understanding. Through the creation and implementation of this methodology, the article demonstrates a pioneering integration of state-of-the-art techniques of generative design with design repositories enabling effective co-design with non-designers.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

General Engineering,Visual Arts and Performing Arts,Modeling and Simulation

Reference114 articles.

1. Vallance, R. , Kiani, S. & Nayfeh, S. 2001 Open Design of Manufacturing Equipment. … on Agile, Reconfigurable Manufacturing, …, pp. 1–12. http://diyhpl.us/{~}bryan/papers2/open-source/Opendesignofmanufacturingequipment.pdf

2. Hansmeyer, M. 2012 Building Unimaginable Shapes. https://www.ted.com/talks/michael_hansmeyer_building_unimaginable_shapes

3. Towards a shared ontology: A generic classification of cognitive processes in conceptual design

4. Additive Manufacturing - Considerations on Geometric Accuracy and Factors of Influence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3