Improving the feel of 3D printed prototypes for new product development: A feasibility study of emulating mass properties by optimising infill structures and materials

Author:

Felton HarryORCID,Yon Jason,Hicks Ben

Abstract

Abstract Product prototypes and particularly those that are 3D printed will have mass properties that are significantly different from the product they represent. This affects both functional performance and stakeholder perception of the prototype. Within this work, computational emulation of mass properties for a primitive object (a cube) is considered, developing a baseline numerical method and parameter set with the aim of demonstrating the means of improving feel in 3D printed prototypes. The method is then applied and tuned for three case study products – a games controller, a hand drill and a laser pointer – demonstrating that product mass properties could be numerically emulated to within ~1% of the target values. This was achieved using typical material extrusion technology with no physical or process modification. It was observed that emulation accuracy is dependent on the relative offset of the centre of mass from the geometric centre. A sensitivity analysis is further undertaken to demonstrate that product-specific parameters can be beneficial. With tuning of these values, and with some neglect of practical limitations, emulation accuracy as high as ~99.8% can be achieved. This was shown to be a reduction in error of up to 99.6% relative to a conventional fabrication.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

General Engineering,Visual Arts and Performing Arts,Modeling and Simulation

Reference48 articles.

1. What do Prototypes Prototype?

2. Ultimaker 2020 Ultimaker S3: Easy-To-Use 3D Printing Starts Here, online document (downloadable on May 12th 2021) https://ultimaker.com/3d-printers/ultimaker-s3.

3. Accelerating product prototyping through hybrid methods: Coupling 3D printing and LEGO

4. Dimensional accuracy of FDM-printed polymer parts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3