The Theory of Fabric Porosity as Applied to Parachutes in Incompressible Flow

Author:

Payne Peter R.

Abstract

SummaryMany aspects of parachute behaviour are dominated by the permeability of the canopy cloth. Techniques employing kinematic principles to predict parachute opening behaviour, for example, must first be able to predict the air flow through the canopy material. This paper is concerned with the development of such a predictive capability.The flow of air through cloth of gauze has been studied by many workers; since the 1850’s, in connection with filters; and since the early twenties, in connection with parachutes. Workers in each of these disciplines seemed unaware of the work being done in the other.In the case of parachute cloth permeability we find the foundations being laid down by such eminent workers as Glauert in 1932 and Taylor in 1944. Yet most subsequent writers seem not to be aware of this, and since World War II, there have been many papers “rediscovering” basic principles; often with errors which could have been corrected by reference to the earlier authorities.In this paper we attempt to bring together all the work which has been done in this field, and to rationalize the data by simple mathematical modelling. Individual elements of the model have been proposed before, of course.We then examine the effect of tension on the geometric porosity of fabric, and hence the pressure loss Ap. A theoretical analysis shows that tension is likely to be a major factor. For cloths which have low porosity when unloaded our simple mathematical model shows that, for a given Ap, a stress equal to 50% of ultimate can increase the air volume flow Q by an order of magnitude. In general, the increase in permeability is greatest at the lower values of Ap, indicating that the viscous term is more influenced by tension than the dynamic term. This theoretical result is confirmed by some rather limited experiments carried out by Lashbrook and Marby. But their data also shows that a cloth made from relatively stiff glass fibers can experience a reduction in permeability when loaded, due to a “closing up” of the weave. The reasons for this are discussed.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering

Reference54 articles.

1. Effect of Angular Deformation on Porosity of Nylon Parachute Fabrics;Baker;RAE Tech. Note Chem 1198 (AD 14515),1953

2. Design Data on Biaxial Forces Developed in Parachute Fabrics;Krizik;WADC Technical Report TR 57-443,1957

3. Air Flow Characteristics of Parachute Fabrics at Simulated High Altitudes;Seshadri;WADC TR 59-374 (AD 270 928),1960

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3